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Abstract— The fact that the millimeter-wave (mmWave)
multiple-input multiple-output (MIMO) channel has sparse sup-
port in the spatial domain has motivated recent compressed
sensing (CS)-based mmWave channel estimation methods, where
the angles of arrivals (AoAs) and angles of departures (AoDs) are
quantized using angle dictionary matrices. However, the existing
CS-based methods usually obtain the estimation result through
one-stage channel sounding that have two limitations: (i) the
requirement of large-dimensional dictionary and (ii) unresolvable
quantization error. These two drawbacks are irreconcilable;
improvement of the one implies deterioration of the other.
To address these challenges, we propose, in this paper, a two-stage
method to estimate the AoAs and AoDs of mmWave channels.
In the proposed method, the channel estimation task is divided
into two stages, Stage I and Stage II. Specifically, in Stage I,
the AoAs are estimated by solving a multiple measurement
vectors (MMV) problem. In Stage II, based on the estimated
AoAs, the receive sounders are designed to estimate AoDs.
The dimension of the angle dictionary in each stage can be
reduced, which in turn reduces the computational complexity
substantially. We then analyze the successful recovery proba-
bility (SRP) of the proposed method, revealing the superiority
of the proposed framework over the existing one-stage CS-based
methods. We further enhance the reconstruction performance by
performing resource allocation between the two stages. We also
overcome the unresolvable quantization error issue present in
the prior techniques by applying the atomic norm minimization
method to each stage of the proposed two-stage approach. The
simulation results illustrate the substantially improved perfor-
mance with low complexity of the proposed two-stage method.

Index Terms— Millimeter wave communications, compressed
sensing, channel estimation, multiple-input multiple-output
system, support recovery, and sequential estimation.
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I. INTRODUCTION

THE spectrum-rich millimeter-wave (mmWave) frequen-
cies between 30−300 GHz have the potential to alleviate

the current spectrum crunch in sub-6GHz bands that service
providers are already experiencing. This major potential of
the mmWave band has made it one of the most important
components of future mobile cellular and emerging WiFi
networks. However, due to significant differences between sys-
tems operating in mmWave and legacy sub-6 GHz bands, pro-
viding reliable and low-delay communication in the mmWave
bands is extremely challenging. Specifically, to achieve the
high spectral efficiency of mmWave communications, accurate
channel state information (CSI) is the key [1]–[5], which is,
however, challenging due to the high dimensionality of the
channel as well as the mmWave hardware constraints.

Nevertheless, the mmWave multiple-input multiple-output
(MIMO) channel exhibits sparse property [6], [7], facilitating
the sparse channel representation by using small numbers of
the angles of arrivals (AoAs), angles of departures (AoDs), and
path gains. Typically, by approximating the AoAs and AoDs
to be on quantized angle grids, the compressed sensing (CS)-
based approaches transform the AoA and AoD estimation
problem to a sparse signal recovery problem [8], [9], where the
transmitter sends the channel sounding beams to the receiver
and the receiver jointly estimates AoAs and AoDs. We refer
to this method as the one-stage channel sounding scheme.
In particular, due to easy implementation and amenability for
analysis, the orthogonal matching pursuit (OMP) has been
widely studied [9]–[13]. The OMP iteratively searches a pair
of AoA and AoD over an over-complete dictionary. However,
the computational complexity of OMP increases quadratically
with the sizes of the dictionaries, i.e., O(LKGrGt), where
K is the number of channel uses for the channel sounding,
L is the number of channel paths, and Gr and Gt are the
dimensions of angle dictionaries for AoA and AoD, respec-
tively. It is worth pointing out that when the dimensions of
the over-complete dictionaries, i.e., Gr and Gt, increase, the
complexity of the one-stage CS-based methods such as OMP
becomes exceedingly impractical.

The over-complete dictionary and high computational com-
plexity issues have been addressed in an adaptive-CS point-of-
view with the primary focus on the sensing vector adaptation
to the previous observations [3], [8], [14]. Theoretically, it has
been shown that the adaptive CS can be beneficial in low
SNR [15]. The multi-level (hierarchical) AoA and AoD search
techniques [3], [8] leveraged the feedback, where the receiver

0090-6778 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on June 16,2022 at 16:03:37 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9062-9854
https://orcid.org/0000-0003-1784-8756
https://orcid.org/0000-0002-4017-9530


4064 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 6, JUNE 2022

conveys a feedback to the transmitter to guide the next level
angle dictionary design. It is worth noting that these adaptation
methods [3], [8] need multiple feedbacks and its performance
critically relies on the reliability of the feedback. To reduce
the feedback overhead, a two-stage CS was proposed in [14],
where the first stage is to obtain a coarse estimation of the
support set and the second stage refines the result of the first
stage. This method [14] only requires one-time feedback, but
achieves compatible estimation performance in low SNR.

A. Our Contributions

We newly study a sequential, two-stage AoA and AoD
estimation framework for reduced computational complexity
and improved estimation performance. Specifically, in Stage I,
the support set of AoAs is recovered at the receiver by
solving a multiple measurement vectors (MMV) problem.
Leveraging the shared sparse set, it has been found that the
MMV approach can provide improved estimation performance
compared to the single measurement vector (SMV) approach
[16]–[18]. In Stage II, the receiver estimates the AoDs of
the channel by exploiting the estimated AoAs from Stage I.
Importantly, the estimated AoAs guide the design of receive
sounding signals, which saves the channel use overhead and
improves the accuracy of AoD estimation. In each stage, since
we only estimate AoAs or AoDs, the dimensions of the signal
and angle dictionary are much smaller than those of the one-
stage joint AoA and AoD estimation [9], [11], [12], readily
reducing the computational complexity substantially. This can
be viewed as of converting the multiplicative channel sounding
overhead (e.g., O(GrGt) of OMP) to an additive overhead.

By analyzing the MMV statistics, we present a lower
bound for the successful probability of recovering the support
sets. Furthermore, based on the successful recovery prob-
ability (SRP) analysis of the proposed two-stage method,
a resource allocation (between Stage I and Stage II) strategy
is newly proposed to improve SRPs for both AoA and AoD
estimation. The numerical results validate the efficacy of the
proposed resource allocation method.

Finally, in order to address the issue of unresolvable quan-
tization error, we extend the proposed two-stage method to
the one with super resolution. Specifically, in each stage of
AoA or AoD estimation, we reformulate the MMV problem
as an atomic norm minimization problem [19]–[21], which is
solved by using alternating direction method of multipliers
(ADMM). Compared to the dictionary-based methods, the
atomic norm minimization can be thought of as the case when
the infinite dictionary matrix is employed. We demonstrate
through simulations that the quantization error of the two-stage
method with super resolution can be effectively reduced.

B. Paper Organization and Notations

The paper is organized as follows. In Section II, we intro-
duce the signal model and the CS-based channel estimation
problem. In Section III, based on the angular-domain chan-
nel representation, the proposed sequential AoA and AoD
estimation method is presented. In Section IV, we analyze
the proposed method in terms of SRP and introduce the

resource allocation strategy. In Section V, the atomic norm-
based design is described, which resolves the quantization
error in the estimated AoAs and AoDs. The simulation results
and conclusion are presented in Section VI and Section VII,
respectively.

Notations: A bold lower case letter a is a vector and a bold
capital letter A is a matrix. AT , A∗, AH , A−1, tr(A), |A|,
�A�F and �a�2 are, respectively, the transpose, conjugate,
Hermitian, inverse, trace, determinant, Frobenius norm of A,
and �2-norm of a. A† = (AHA)−1AH denotes the pseudo
inverse of a tall matrix A. [A]:.i, [A]i,:, [A]i,j , and [a]i
are, respectively, the ith column, ith row, ith row and jth
column entry of A, and ith entry of vector a. vec(A) stacks
the columns of A and forms a long column vector. diag(a)
returns a square diagonal matrix with the vector a on the
main diagonal. IM ∈ R

M×M is the M -dimensional identity
matrix. The 1M,N ∈ RM×N and 0M,N ∈ RM×N are the all
one matrix, and zero matrix, respectively. R(F) denotes the
subspace spanned by the columns of matrix F. A ⊗ B and
A ◦B denote the Kronecker product and Khatri-Rao product
of A and B, respectively. The �x� returns the smallest integer
greater than or equal to x.

II. SYSTEM MODEL AND GENERAL

STATEMENT OF TECHNIQUES

A. Channel Model

The mmWave transmitter and receiver are equipped with
Nt and Nr antennas, respectively. Suppose that the number
of separable paths between the transmitter and receiver is L,
where L � min{Nr, Nt}. The physical mmWave channel
representation based on the uniform linear array [9], [22]–[24]
is given by,1

H =

√
NrNt

L

L∑
l=1

αlar(fr,l)aH
t (ft,l), (1)

where at(·) ∈ CNt×1 and ar(·) ∈ CNr×1 are
the array response vectors of the transmit and receive
antenna arrays. Specifically, at(f) and ar(f) are given by
at(f) = 1√

Nt

[
1, ej2πf , . . . , ej2π(Nt−1)f

]T
and ar(f) =

1√
Nr

[
1, ej2πf , . . . , ej2π(Nr−1)f

]T
, where f ∈ [0, 1) is the nor-

malized spatial angle. Here we assume fr,l and ft,l in (1) are
independent and uniformly distributed in [0, 1), and the gain
of the lth path αl follows the complex Gaussian distribution,
i.e., αl ∼ CN (0, σ2

l ). Angular domain representation of the
channel in (1) can be rewritten as

H = Ar diag(h)AH
t , (2)

where Ar = [ar(fr,1), . . . ,ar(fr,L)] ∈ CNr×L, At =
[at(ft,1), . . . ,at(ft,L)] ∈ CNt×L, and h = [h1, . . . , hL] ∈
CL×1 with hl =

√
NrNt

L αl, l = 1, . . . , L.

1In wideband communication systems, one can model the channel as
constant AoA/AoD and varying path gains [25], [26]. Here we could also
assume a narrow band block fading channel where the channel is static during
the channel coherence time. The CSI acquisition and data transfer are framed
to happen within the channel coherence time [9], [22]–[24].
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Fig. 1. Conventional one-stage mmWave channel sounding.

B. Channel Sounding

Fig. 1 illustrates the conventional one-stage mmWave chan-
nel sounding operation, where the transmitter and receiver
are equipped with the large-dimensional hybrid analog-digital
MIMO arrays that are driven by a limited number of RF
chains, i.e., N � min{Nt, Nr}. In each channel use of
downlink channel sounding, the transmitter generates a beam
conveying the pilot signal and the receiver simultaneously
generates N separate beams, using the N RF chains, to obtain
a N -dimensional observation. We let the numbers of the
transmit sounding beams (TSBs) and receive sounding beams
(RSBs) for channel estimation be Bt and Br, respectively. For
convenience, we assume that Br is an integer multiple of N .
The total number of channel uses for the conventional one-
stage sounding process is then K = BrBt/N . Specifically,
the RSB matrix in Fig. 1 is given by

Wb = [W1,W2, . . . ,WBr/N ] ∈ CNr×Br , (3)

where Wi ∈ CNr×N for i = 1, 2, . . . , Br/N , and Wi =
WA,iWD,i with WA,i ∈ CNr×N and WD,i ∈ CN×N being
the receive analog and digital sounders, respectively. Similarly,
the TSB matrix is given by

Fb = [f1, f2, · · · , fBt ] ∈ CNt×Bt , (4)

where fj ∈ CNt×1 for j = 1, 2, · · · , Bt is the jth transmit
sounder, and fj = FA,jfD,jsj with FA,j ∈ CNt×N and
fD,j ∈ CN×1 being the transmit analog and digital sounders,
respectively. Each observation yi,j ∈ CN×1 in Fig. 1, associ-
ated with the ith RSB and jth TSB, i ∈ {1, . . . , Br/N} and
j ∈ {1, 2, . . . , Bt}, can be expressed as

yi,j = WH
i Hfjsj + WH

i nj . (5)

The sj denotes the training signal and without loss of gen-
erality, we let sj = 1. It is worth noting that only phase
shifters are employed to constitute the analog arrays for power
saving, where |[WA,i]m,n| = 1/

√
Nr, and |[FA,j ]m,n| =

1/
√

Nt, ∀m, n. Moreover, the power constraint �fj�2
2 = p is

imposed to the transmit sounding beam at each channel use
with p being the power budget, and the noise vector follows
nj ∼ CN (0Nr , σ

2INr ). Thus, the signal to noise ratio is p/σ2.
We collect all observations in (5) by using Wb in (3) and

Fb in (4) as

Y = WH
b HFb + WH

b N, (6)

where Y ∈ CBr×Bt and N = [n1, . . . ,nBt ] ∈ CNr×Bt . For
example, Wb and Fb in (6) can be generated randomly [4]
or designed as a partial discrete Fourier transform (DFT)
matrix [9]. We assume that the number of observations is

strictly lower than the dimension of the channel matrix, i.e.,
BrBt � NrNt. The channel estimation task is to utilize the
observations in (5) (equivalently, (6)) to obtain the estimate
of the channel matrix H in (2). Encountering (2), the channel
estimation task boils down to reconstructing {fr,1, . . . , fr,L},
{ft,1, . . . , ft,L} and {h1, . . . , hL} from the observations.

1) Oracle Estimator: The oracle estimator that we will
utilize for benchmark2 is obtained by assuming perfect knowl-
edge of AoAs and AoDs in (2). The oracle channel estimate
only needs to estimate the path gain h, thus the channel esti-
mate is expressed as Ĥ = Ar diag(ĥ)AH

t , where diag(ĥ) ∈
CL×1 is the solution to the following problem:

ĥ = argmin
h

�Y − WH
b Ar diag(h)AH

t Fb�2
F . (7)

Because (7) is convex, the optimal solution is ĥ =
(XHX)−1XH vec(Y), where X ∈ C

BrBt×L is given by X =[
vec ([WH

b Ar]:,1[AH
t Fb]1,:), . . . , vec ([WH

b Ar]:,L[AH
t Fb]L,:)

]
.

Because we have BrBt � L, XHX is invertible.

C. Compressed Sensing-Based Channel Estimation

Recalling the channel model in (2), a typical CS frame-
work restricts the normalized spatial angles fr,l, ft,l, l =
1, 2, . . . , L, to be chosen from the discrete angle dictio-
naries, fr,l ∈ [0, 1/Gr, . . . , (Gr − 1)/Gr], and ft,l ∈
[0, 1/Gt, . . . , (Gt − 1)/Gt], where Gr = �sNr� and Gt =
�sNt� with s ≥ 1 are, respectively, the cardinalities of the
receive and transmit spatial angle dictionaries. The transmit
and receive array response dictionaries are then given by

Ār =
[
ar(0), ar

(
1

Gr

)
, . . . ,ar

(
Gr − 1

Gr

)]
∈ CNr×Gr

and

Āt =
[
at(0), at

(
1
Gt

)
, . . . ,at

(
Gt − 1

Gt

)]
∈ CNt×Gt .

For the latter array response dictionaries, the channel model
in (2) can be rewritten as

H = ĀrH̄aĀH
t + E, (8)

where H̄a ∈ CGr×Gt is an L-sparse matrix with L non-zero
entries corresponding to the positions of AoAs and AoDs on
their respective angle grids, and E ∈ CNr×Nt denotes the
quantization error.

Because the dictionary matrices Ār and Āt are known, the
channel estimation task is equivalent to estimating the non-
zero entries in H̄a. Plugging the model in (8) into (6) gives

Y = WH
b Ār(H̄a + E)ĀH

t Fb + WH
b N. (9)

Vectorizing Y in (9) yields

vec(Y)=(FT
b Ā∗

t ⊗ WH
b Ār)(vec(H̄a+E)) + vec(WH

b N).
(10)

2Both Cramer-Rao lower bound (CRLB) [27] and the oracle estimator [9]
can be utilized to evaluate the accuracy of estimation algorithms. Since the
CRLB can only be calculated for one-stage method, in this work we use the
oracle estimator as the benchmark instead.
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Fig. 2. Illustration of the proposed two-stage AoA and AoD estimation.

Denoting D = FT
b Ā∗

t ⊗ WH
b Ār ∈ CBrBt×GrGb and

n̄ = D vec(E) + vec(WH
b N) ∈ CBrBt×1 gives vec(Y) =

D vec(H̄a) + n̄. Hence, the estimation of vec(H̄a) from (10)
can be stated as a sparse signal reconstruction problem:

min
H̄a

� vec(Y) − D vec(H̄a)�2, s.t. � vec(H̄a)�0 = L, (11)

where �·�0 is the �0-norm that returns the number of non-zero
coordinates of a vector. The problem in (11) can be solved by
using standard CS methods [28], [29].

The number of required observations to reconstruct L-sparse
vector vec(H̄a) ∈ CGrGt×1 in (11) has previously charac-
terized as O (L · log(GrGt)) [28], which is much smaller
than O(NrNt). However, the computational complexity for
estimating vec(H̄a) in (11) by using OMP, for example,
is O(LBrBtGrGt). Though the quantization error associated
with using dictionaries can be made small by increasing the
sizes of the dictionaries, the growing computational complex-
ity remains a critical challenge. Instead of developing another
one-stage channel sounding method (as in Fig. 1), we propose
a new two-stage channel sounding and estimation framework
to overcome the large overhead and complexity drawbacks.

III. TWO-STAGE AOA AND AOD ESTIMATION

A conceptual diagram of the proposed two-stage AoA
and AoD estimation framework is presented in Fig. 2. The
proposed sequential technique has constituent two stages of
channel sounding, where each stage exclusively exploits much
low-dimensional dictionary compared to the one-stage channel
sounding in Fig. 1.

Under the similar definitions of one-stage method in (6),
in Stage I of the two-stage framework of Fig. 2, the trans-
mit and receive sounding beams are represented by Fb,1 ∈
CNt×Bt,1 and Wb,1 ∈ CNr×Br,1 , respectively. The AoA
estimates of Stage I produce the estimation of array response
matrix Ar in (2), i.e., Âr ∈ CNt×L. In Stage II, the transmit
and receive sounding beams are denoted by Fb,2 ∈ CNt×Bt,2

and Wb,2 ∈ CNr×Br,2 , respectively. In particular, the receive
sounding beams Wb,2 is optimized based on the estimated
AoA array response matrix Âr at Stage I, which leads to
improved estimation accuracy as our analysis and simulation
show. The total number of observations is given by Np =
Bt,1Br,1 + Bt,2Br,2. Accordingly, the total number of channel
uses is K = (Bt,1Br,1 + Bt,2Br,2)/N .

A. Stage I: AoA Estimation

We rewrite the channel model in (8) as H = ĀrH̄aĀH
t +

E = ĀrQr + E, where Qr ∈ CGr×Nt has L non-zero
rows, whose indices are collected into the support set Ωr ⊂
{1, 2, . . . , Gr} and |Ωr| = L. Using Ωr, the Ar in (2)
can be written using the columns of Ār indexed by Ωr as
[Ār]:,Ωr = Ar.

To estimate the AoAs, we need to recover the support
set Ωr. Similar to the one-stage sounding in (6), at Stage I
in Fig. 2, the observations Y1 ∈ C

Br,1×Bt,1 is expressed as

Y1 = WH
b,1HFb,1 + WH

b,1N1

= WH
b,1ĀrQrFb,1 + WH

b,1EFb,1 + WH
b,1N1

= Φ1C1 + WH
b,1EFb,1 + WH

b,1N1, (12)

where Φ1 = WH
b,1Ār ∈ CBr,1×Gr , C1 = QrFb,1 ∈

C
Gr×Bt,1 , and N1 ∈ CNr×Bt,1 is the noise matrix with inde-

pendent and identically distributed (i.i.d.) entries according to
[N1]i,j ∼ CN (0, σ2), ∀i, j. Due to the row sparsity of Qr,
it is clear that C1 also has L non-zero rows indexed by Ωr.
If Bt,1 = 1, the recovery of C1 in (12) can be formulated as
a common SMV CS problem. When Bt,1 > 1, it becomes an
MMV CS problem [30], where the multiple columns of C1 in
(12) shares a common support. The optimization problem
estimating the row support of C1 for MMV is now given by

Ĉ1 = arg min
C1

�Y1 − Φ1C1�2
F , s.t. �C1�r,0 ≤ L, (13)

where �C1�r,0 is defined as the number of non-zero rows
of C1. Using a similar method as the OMP, the problem in
(13) can be solved by simultaneous OMP (SOMP) [31] that is
described in Algorithm 1. The output is the estimated support
set Ω̂r.3 For notational simplicity, we omit the subscripts in
Y1 and Φ1 in Algorithm 1.

It should be emphasized that the choice of the measurement
matrix Φ1 and C1 has a profound impact on the recovery
performance of SOMP [31]. Observing (12), the TSB Fb,1

is incorporated in C1, and the RSB Wb,1 is included in the

3Here, we assume the number of paths is known as a priori for convenience
of performance analysis in Section IV. When the number of paths is
unavailable as a priori, a threshold can be introduced to compare with the
power of the residual matrix R(l) in Step 8 at each iteration [32], [33].
When the power of R(l) is less then the threshold, Algorithm 1 terminates,
which generates the estimate of number of paths.
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Algorithm 1 Simultaneous OMP: SOMP(Y,Φ, L)
1: Input: Observations Y, measurement matrix Φ, sparsity

level L.
2: Initialization: Support set Ω̂(0) = ∅, residual matrix R(0) =

Y.
3: for l = 1 to L do
4: Calculate the coefficient matrix: S = ΦHR(l−1).
5: Select the largest index η = argmax

i=1,··· ,Gr

�[S]i,:�2.

6: Update the support set: Ω̂(l) = Ω̂(l−1)
⋃

η.
7: Update the recovery of matrix: Ĉ = ([Φ]:,�Ω(l))†Y.

8: Update the residual matrix: R(l) = Y − [Φ]:,�Ω(l)Ĉ.
9: end for

10: Output: Ω̂(L), Ĉ.

measurement matrix Φ1. Thus, in what follows, the design of
RSB Wb,1 and TSB Fb,1, is of interest.

1) RSB and TSB Design: Firstly, we focus on the design
of TSB Fb,1. Considering C1 = H̄aĀH

t Fb,1, in order to
guarantee that Fb,1 is unbiased for each item (column) in
Āt, we design Fb,1 by maximizing the minimum correlation
between Fb,1 and each column in Āt, which yields

max
Fb,1

min
i

�FH
b,1

[
Āt

]
:,i
�
2
, s.t. FH

b,1Fb,1 = p1IBt,1 , (14)

where p1 is the power allocation of Stage I. After taking the
constraint into account, the optimal solution to the problem
in (14) should ideally satisfy the following �FH

b,1

[
Āt

]
:,i
�
2

=√
p1Bt,1/Nt, i = 1, . . . , Gt. It means that Fb,1 is isometric

to all columns of Āt, which is obtained by

Fb,1 =
√

p1

[
e1, e2, . . . , eBt,1

]
, (15)

where ei the ith column of INt . The construction of ej , j =
1, . . . , Bt,1 in (15) using the hybrid analog-digital array is
possible due to the fact that any vector can be constructed
by linearly combining N(≥2) RF chains [34]. To be more
specific, there exists FA,j ∈ CNt×N , fD,j ∈ CN×1, and sj =
1 such that ej = FA,jfD,jsj , i.e.,

ej =
1√
Nt

[1Nt 1̃(j)
Nt

1Nt · · ·1Nt ]︸ ︷︷ ︸
�FA,j

√
Nt

2
[1,−1, 0, · · · , 0]T︸ ︷︷ ︸

�fD,j

×1,

(16)

where 1̃(j)
Nt

∈ RNt×1 is defined as the all one vector 1Nt ∈
RNt×1 other than the jth entry being −1.

For the measurement matrix Φ1 = Wb,1Ār, we optimize
Wb,1 by incorporating the isometric CS measurement matrix
design criterion [35]–[37]:

min
Φ1

∥∥∥ΦH
1 Φ1 − IGr

∥∥∥2
F

. (17)

After performing standard algebraic manipulations and
exploiting the fact ĀrĀH

r = Gr

Nr
INr , the optimality condition

for (17) is that the columns of Wb,1 are orthogonal. Account-
ing for the analog-digital array constraint into Wb,1 and setting
Br,1 = Nr, we use the DFT matrix SNr ∈ CNr×Nr such that

Wb,1 = SNr , (18)

where [SNr ]m,n = 1√
Nr

e−j 2π(m−1)(n−1)
Nr , ∀m, n.

Based on the RSB in (18), in the following, the distribution
of the noise term in (12) is discussed.

Proposition 1: For any semi-orthogonal matrix A ∈ C
m×n

with AAH = I and random vector n ∈ Cn×1 with i.i.d.
entries according to CN (0, σ2), then if we denote b = An,
and the entries in b are also i.i.d. CN (0, σ2).

Proof: The covariance matrix of b is given by
E[AnnHAH ] = σ2I. Because the entries in b are obviously
complex Gaussian, thus, from the property of Gaussian distri-
bution, the entries in b are also i.i.d. CN (0, σ2).

Remark 1: Due to the semi-orthogonality of Wb,1 in
(18), according to Proposition 1, the effective noise matrix
WH

b,1N1 ∈ CNr×Bt,1 in (12) has i.i.d. Gaussian entries,
i.e., [WH

b,1N1]i,j ∼ CN (0, σ2), ∀i, j. Moreover, since Φ1 =
WH

b,1Ār, we have �[Φ1]:,i�2 = 1, ∀i.

The algorithmic procedure estimating AoAs are described
in Algorithm 2. Given the estimated support set Ω̂r from
Algorithm 1, the output of Algorithm 2 is the estimated
AoA array response matrix Âr = [Ār]:,�Ωr

∈ CNr×L.
Overall, the number of channel uses for the AoA estimation is
K1 = Bt,1

Nr

N .

Algorithm 2 AoA Estimation Algorithm
1: Input: Channel dimension Nr, Nt, number of RF chains

N , channel paths L, power allocation p1, receive array
response dictionary Ār ∈ CNr×Gr .

2: Initialization: Generate the TSB Fb,1 =
√

p1[e1, . . . , eBt,1 ]
in (15) according to (16) and the RSB Wb,1 = SNr in (18).

3: Collect the observations Y1 = WH
b,1HFb,1 + WH

b,1N1.
4: Solve the problem in (13) by using Algorithm 1 with the

sparsity level L and Φ1 = WH
b,1Ār,

(Ω̂r, Ĉ1) = SOMP(Y1,Φ1, L).

5: Output: Estimation of AoA array response matrix
Âr = [Ār]:,�Ωr

.

B. Stage II: AoD Estimation

To attain the estimation of AoDs, we can utilize the similar
method as Stage I. Similar to the one-stage sounding in
(6), the observations of Stage II in Fig. 2 is expressed as
Y2 ∈ CBr,2×Bt,2 ,

Y2 = WH
b,2HFb,2 + WH

b,2N2, (19)

where Wb,2 ∈ CNr×Br,2 and Fb,2 ∈ CNt×Bt,2 are the RSB
and TSB of the Stage II, respectively. The N2 ∈ CNr×Bt,2 is
the noise matrix with i.i.d. entries according to CN (0, σ2).

Recall from (2) and (8), the channel matrix is rewritten as

H = ĀrH̄aĀH
t + E. (20)

One can find that ĀrH̄a ∈ CNr×Gt has L non-zero columns,
indexed by Ωt with |Ωt| = L. Then, plugging (20) into (19)
and taking conjugate transpose give

YH
2 = FH

b,2Āt︸ ︷︷ ︸
�Φ2

H̄H
a ĀH

r Wb,2︸ ︷︷ ︸
�C2

+FH
b,2E

HWb,2 + NH
2 Wb,2

= Φ2C2 + FH
b,2E

HWb,2 + NH
2 Wb,2, (21)
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where Φ2 = FH
b,2Āt ∈ CBt,2×Gt , and C2 = H̄H

a ĀH
r Wb,2 ∈

CGt×Br,2 . It is straightforward that the C2 has only L non-
zero rows indexed by Ωt. Similar to (13) in Stage I, the support
set Ωt estimation problem can be formulated as

Ĉ2 = arg min
C2

∥∥YH
2 − Φ2C2

∥∥2
F
, s.t. �C2�r,0 ≤ L, (22)

which is solved by Algorithm 1. In what follows, the design
of RSB Wb,2 and TSB Fb,2 for Stage II is of interest.

1) RSB and TSB Design: For the design of RSB Wb,2,
we leverage the estimated AoAs from Stage I to formulate

max
Wb,2

min
i

�WH
b,2[Âr]:,i�2

. (23)

If Wb,2 is semi-unitary, i.e., WH
b,2Wb,2 = IBr,2 , the objective

value in (23) satisfies �WH
b,2[Âr]:,i�2 ≤ 1, ∀i with the equality

holding if

R(Wb,2) = R(Âr). (24)

One can check (24) holds only if Br,2 ≥ L. Without loss
of optimality and to save the number of sounders, we set
Br,2 = L. One solution to (24) is attained when the columns
of Wb,2 are the orthonormal basis of Âr. For example, we let
Wb,2 be the Q-matrix of the QR decomposition4 of Âr such
that

Wb,2 = QR(Âr), (25)

where QR(·) returns the Q-matrix of a given matrix.
Remark 2: Due to the semi-orthogonality of Wb,2 and

the conclusions in Proposition 1, the effective noise matrix
WH

b,2N2 ∈ C
Br,2×Bt,2 in (19) has i.i.d. Gaussian entries, i.e.,

[WH
b,2N2]i,j ∼ CN (0, σ2), ∀i, j.

As for the design of Fb,2, we exploit the isometric CS
measurement matrix design criterion,

min
Φ2

�ΦH
2 Φ2 − IGt�2

F . (26)

After similar manipulations as (17), the optimality condition
for Fb,2 of (26) is that the columns of Fb,2 are orthogonal.

Then, following the same procedure as (15) and (16),
we obtain the design of TSP Fb,2 below,

Fb,2 =
√

p2[e1, e2, . . . , eBt,2 ], (27)

where p2 is the power coefficient of Stage II.
The algorithmic procedure of estimating AoDs are described

in Algorithm 3. Provided the estimated support set Ω̂t, the
output of Algorithm 3 is the estimated AoD array response
matrix Ât = [Āt]:,�Ωt

∈ CNt×L. The number of channel uses
for the AoD estimation in Stage II is K2 = Bt,2, and the
overall number of channel uses for two stages is

K = K1 + K2 = Bt,1
Nr

N
+ Bt,2. (28)

Remark 3: Recall that the number of observations for the
conventional one-stage channel sounding in Fig. 1 is O(L ·
log(GrGt/L)) [28]. As a comparison, since the proposed
two-stage channel sounding in Fig. 2 only estimates AoA
in Stage I, and estimates AoD in Stage II, the number of
required observations is O(L · log(Gr/L)) in Stage I, and
O(L · log(Gt/L)) in Stage II. The total number of required

4The QR decomposition is a decomposition of a matrix A ∈ Cm×n into
the product A = QR of an orthonormal matrix Q ∈ Cm×n and an upper
triangular matrix R ∈ Cn×n.

Algorithm 3 AoD Estimation Algorithm
1: Input: Channel dimension Nr, Nt, number of RF chains

N , channel paths L, power allocation p2, output of AoA
estimation Âr, transmit array response dictionary Āt ∈
CNt×Gt .

2: Initialization: Generate the TSB Fb,2 =
√

p2[e1, . . . , eBt,2 ]
in (27) and RSB Wb,2 = QR(Âr) in (25).

3: Collect the observations Y2 = WH
b,2HFb,2 + WH

b,2N2.
4: Solve the problem in (22) by using Algorithm 1 with the

sparsity level L and Φ2 = FH
b,2Āt,

(Ω̂t, Ĉ2) = SOMP(YH
2 ,Φ2, L).

5: Output: Estimation of AoD array response matrix
Ât = [Āt]:,�Ωt

.

observations for the proposed two-stage channel sounding is
O(L·log(Gr/L)) + O(L·log(Gt/L)) = O(L·log(GtGr/L2),
which is less than the conventional one-stage sounding.

Remark 4: About happening of the design RSB and TSB,
in Stage I, one can find that the design of RSB in (18) and TSB
in (15) are completed before the channel estimation, which are
then utilized by the transmitter and receiver. Like the fact that
the training pilots are known for the transmitter and receiver
in advance before the task of channel estimation, here we
also assume that the TSB and RSB are known as a priori.
In Stage II, the TSB Fb,2 in (27) is also designed in advance,
while the RSB Wb,2 in (25) is designed and employed at the
receiver side, which requires no feedback to the transmitter.
Overall, the proposed method requires no feedback during the
whole procedures of the channel estimation.

C. Channel Estimation
Recalling the channel representation in (2) and after esti-

mating Âr ∈ CNr×L in Algorithm 2 and Ât ∈ CNt×L in
Algorithm 3, we can express the channel estimate as

Ĥ = ÂrR̂ÂH
t , (29)

where R̂ ∈ CL×L denotes the estimation of diag(h) in (2).
In the following, we will discuss how to obtain the estimate
R̂. It is worth noting that unlike (2) we do not restrict R̂ to
be a diagonal matrix because of the possible permutations in
the columns of Âr and Ât.

Recall the observations of each stage, i.e., Y1 =
WH

b,1ĀrH̄aĀH
t Fb,1 + WH

b,1EFb,1 + WH
b,1N1, and

Y2 = WH
b,2ĀrH̄aĀH

t Fb,2 + WH
b,2EFb,2 + WH

b,2N1.
Since WH

b,1N1 and WH
b,2N2 are i.i.d. Gaussian, incorporating

the expressions of channel estimate in (29), the estimation of
R̂ is given by

R̂ = arg min
R

∥∥∥∥∥
[
vec(Y1)
vec(Y2)

]
−
[
vec(WH

b,1ÂrRÂH
t Fb,1)

vec(WH
b,2ÂrRÂH

t Fb,2)

]∥∥∥∥∥
2

F

,

where the optimal solution is given by vec(R̂) =(
AH

1 A1 + AH
2 A2

)−1 (
AH

1 vec(Y1) + AH
2 vec(Y2)

)
, where

A1 = (ÂH
t Fb,1)T ⊗ WH

b,1Âr ∈ CNrBt,1×L2
and A2 =

(ÂH
t Fb,2)T ⊗ WH

b,2Âr ∈ CLBt,2×L2
. Because NrBt,1 �

L2 and Bt,2 � L, the matrix AH
1 A1 + AH

2 A2 ∈ C
L2×L2

is always invertible.
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Remark 5: After R̂ is estimated, the pairing of AoAs and
AoDs can be obtained by selecting positions of the largest L
entries in R̂. Then, the path gain hl, l = 1, 2, · · · , L, can be
calculated by solving a problem like the oracle estimator in
(7), where the two-stage RSBs and TSBs are utilized.

IV. PERFORMANCE ANALYSIS AND

RESOURCE ALLOCATION

In this section, we discuss the reconstruction probability
of AoAs and AoDs of the proposed two-stage method in
Section III. Moreover, we further enhance the reconstruction
performance by performing power and channel use allocation
to each stage.

A. Successful Recovery Probability Analysis
1) SRP of AoA Estimation: As a starting point, we focus

on the SRP of Algorithm 1. An SRP bound of SOMP was
previously studied in [38], where the analysis was based on
the restricted isometry property constant of the measurement
matrix Φ. In this work, we instead analyze the recovery
performance of Algorithm 1, based on the mutual incoherence
property (MIP) constant5 [39] of Φ.

Lemma 1: Suppose C ∈ CN×d is a row sparse matrix,
where L (�N ) rows of C, indexed by Ω, are non-zero.
We consider the observation Y = ΦC + N, where Y ∈
CM×d, Φ ∈ CM×N is the measurement matrix with
L ≤ M � N and �[Φ]:,i�2 = 1, ∀i, and N ∈ CM×d is
the noise matrix with each entry i.i.d. according to complex
Gaussian distribution CN (0, σ2). Given that the MIP constant
μ of the measurement matrix Φ is μ < 1/(2L − 1), the SRP
of Algorithm 1 satisfies

Pr(VS) ≥ F2

(
(1 − (2L − 1)μ)2C2

min − 4σ2μM,d

4σ2σM,d

)
, (30)

where VS is the event of successful reconstruction of Algo-
rithm 1, Cmin = min

i∈Ω
�[C]i,:�2, μM,d = (M1/2 + d1/2)2,

σM,d = (M1/2 + d1/2)(M−1/2 + d−1/2)1/3, and the function
F2(·)6 is the cumulative distribution function (CDF) of Tracy-
Widom law [40], [41].

5The MIP constant of matrix Φ is quantified by a variable μ =
maxi�=j |〈[Φ]:,i, [Φ]:,j〉|, where 〈·, ·〉 denotes the inner product.

6The CDF of Tracy-Widom law [40], [41] F2(·) is expressed as

F2(s) = exp

�� ∞

s
(x − s)q(x)dx

�
,

where q(x) is the solution of Painlevé equation of type II:

q′′(x) = xq(x) + 2q(x)3, q(x) ∼ Ai(x), x → ∞,

where Ai(x) is the Airy function [40], [41]. To save computational complexity,
we admit the table lookup method [42] to obtain the value of F2(·).

Proof: See Appendix A.
Proposition 2: Suppose the signal model provided in

Lemma 1 and, given the quantization error, the observation
model Y = ΦC + Ñ, where effective noise Ñ = E + N with
quantization error E and Gaussian noise N of i.i.d. CN (0, σ2)
entries. If μ is the MIP constant of the measurement matrix
Φ with μ < 1/(2L− 1), the SRP of Algorithm 1 is given by

Pr(VS)≥F2

(
((1−(2L−1)μ)Cmin−2�E�2)

2−4σ2μM,d

4σ2σM,d

)
,

(31)

where Cmin = min
i∈Ω

�[C]i,:�2, μM,d = (M1/2 + d1/2)2, and

σM,d = (M1/2 + d1/2)(M−1/2 + d−1/2)1/3.
Proof: See Appendix B.

As a direct consequence of Proposition 2, Theorem 1 below
quantifies the SRP of AoA estimation in Algorithm 2.

Theorem 1: Assume the MIP constant of the measurement
matrix Φ1 in Algorithm 2 satisfies μ1 < 1/(2L − 1).
Then, the SRP of Algorithm 2 is lower bounded by, (32)
and (33), as shown at the bottom of the page, where
μ̃1 = 1 − (2L − 1)μ1, AS is the event of successful
reconstruction of AoA, hmin = minl≤L |hl| with hl being the
lth entry of h in (2), μNr,Bt,1 = (N1/2

r + B
1/2
t,1 )2, σNr,Bt,1 =

(N1/2
r + B

1/2
t,1 )(N−1/2

r + B
−1/2
t,1 )1/3, and E1 = WH

b,1EFb,1.
In (33), the SRP bound is denoted as a function of (p1, Bt,1).

Proof: Recalling the observation model in (12) with the
TSB and RSB in (15) and (18), respectively, the effective TSB

matrix C1 in (12) satisfies �[C1]rl,:
�
2

=
√

p1Bt,1
Nt

|hl|, where

rl ∈ Ωr is the index of the lth path of Ar in Ār such that
[Ār]:,rl

= [Ar]:,l, l = 1, . . . , L. According to Proposition 2,

substituting Cmin = min
rl∈Ωr

�[C1]rl,:�2 =
√

p1Bt,1
Nt

|hmin| in

(31) results in the inequality for Pr(AS). The approximation
in (32) is obtained by neglecting the quantization term E1,
which completes the proof.

Remark 6: According to Theorem 1, when the power p1 of
Stage I is fixed and the number of transmit sounding beams
Bt,1(�Nr) increases, the SRP of AoA increases accordingly.
Interestingly, it is more efficient to increase the power allo-
cation p1 than the number of transmit sounding beams Bt,1

to achieve a higher SRP of AoA. This can be understood
through the two cases where p1 or Bt,1 grow at the same
rate. Compared to the case of p1, both μNr,Bt,1 and σNr,Bt,1

increase slowly as Bt,1 grows, resulting in lower SRP in (32).
This aspect will be clearer in the next subsection when we
optimize the allocation of p1 and Bt,1.

Pr(AS) ≥ F2

⎛⎜⎜⎜⎝
(

μ̃1hmin

√
p1Bt,1

Nt
− 2�E1�2

)2

− 4σ2μNr,Bt,1

4σ2σNr,Bt,1

⎞⎟⎟⎟⎠
≈ F2

(
μ̃2

1h
2
min

p1Bt,1
Nt

− 4σ2μNr,Bt,1

4σ2σNr,Bt,1

)
(32)

� PI(p1, Bt,1) (33)
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2) SRP of AoD Estimation: Regarding the SRP of
Algorithm 3, we assume for tractability that the AoA estima-
tion in Stage I was perfect. The following theorem quantifies
the SRP of AoD estimation in Algorithm 3.

Theorem 2: Provided the perfect AoA knowledge known a
priori and MIP constant μ2 of matrix

√
Nt/(p2Bt,2)Φ2 satis-

fying μ2 < 1/(2L − 1), the SRP of Algorithm 3 is lower
bounded by, (34) and (35), as shown at the bottm of the
page, where μ̃2 = 1 − (2L − 1)μ2, DS denotes the event of
successful AoD reconstruction, hmin = minl≤L |hl| with hl

being the lth entry of h in (2), μBt,2,L = (L1/2 + B
1/2
t,2 )2,

σBt,2,L = (L1/2 + B
1/2
t,2 )(L−1/2 + B

−1/2
t,2 )1/3, and E2 =

Nt

p2Bt,2
FH

b,2EWb,2. In (35), the SRP lower bound is substituted
as a function of (p2, Bt,2).

Proof: See Appendix C.

B. Power and Channel Use Allocation

We recall that in the proposed two-stage method, the trans-
mit sounding beams at Stage I and II are, respectively, Fb,1 =√

p1[e1, . . . , eBt,1 ] in (15) and Fb,2 =
√

p2[e1, . . . , eBt,2 ]
in (27). The total power budget E is therefore defined by

E = p1Bt,1Nr/N︸ ︷︷ ︸
�E1

+ p2Bt,2︸ ︷︷ ︸
�E2

, (36)

where E1 and E2 are the power budgets at the Stage I and
Stage II, respectively.

We let η1 > 0 and η2 > 0 be the target SRP values at
Stage I and Stage II, respectively. The SRP-guaranteed power
budget minimization problem7 is then formulated as

min
p1,p2,Bt,1,Bt,2

E1 + E2 (37a)

s.t. PI(p1, Bt,1) ≥ η1, PII(p2, Bt,2) ≥ η2, (37b)

E1 = p1Bt,1Nr/N, E2 = p2Bt,2, (37c)

Bt,1 ≥ B̃t,1, Bt,2 ≥ B̃t,2, (37d)

where B̃t,1 and B̃t,2 are the minimum numbers of allowed
transmit beams at Stage I and Stage II, respectively. The
problem in (37) optimizes the power allocation p1 and p2, and
the number of transmit beams Bt,1 and Bt,2 to minimizes the
total power budget subject to the SRP requirements at Stage I
and Stage II. It is worth noting that that because the problem

7In (37), we present the SRP-constrained power minimization problem for
optimizing power and channel use allocations. For instance, this criterion can
be thought of as a prudent alternative of the performance maximization subject
to power constraints in the MIMO literature because it provides a guarantee
on the achievable performance [43]. Multiple variants of the performance-
guaranteed power minimization problem can be found in the context of MIMO
resource allocation [44], [45].

in (37) is separable, thus (37) is equivalent to the following
two sub-problems,

min
p1,Bt,1

E1 (38a)

s.t. PI(p1, Bt,1) ≥ η1, E1 = p1Bt,1
Nr

N
, Bt,1 ≥ B̃t,1, (38b)

and

min
p2,Bt,2

E2 (39a)

s.t. PII(p2, Bt,2) ≥ η2, E2 = p2Bt,2, Bt,2 ≥ B̃t,2. (39b)

First of all, we focus on the sub-problem of Stage I in (38).
It is worth noting that directly solving (38) is difficult due to
the coupled constraints. Thus, we first maximize the SRP, i.e.,
PI(p1, Bt,1), with arbitrary power budget E1,

max
p1,Bt,1

PI(p1, Bt,1) (40a)

s.t. p1Bt,1Nr/N = E1, Bt,1 ≥ B̃t,1. (40b)

Prior to showing how to solve the problem in (40), we first
elaborate the relation between the problem in (38) and (40).
It is easy to observe that as E1 increases the achievable SRP
of the objective function in (40) also increases. Thus, the
minimum E1 in (38) is achieved when the SRP constraint in
(38b), i.e., PI(p1, Bt,1) ≥ η1, holds as the equality. Moreover,
given any arbitrary power budget E1 in problem (40), the
interrelation between the power allocation p1 and the number
of transmit sounding beams Bt,1 points to a fundamental
tradeoff between them, which is demonstrated in the following
theorem.

Theorem 3: Consider the following non-linear
programming

(p̂1, B̂t,1) = argmax
p1,Bt,1

PI(p1, Bt,1) (41a)

s.t. p1Bt,1Nr/N = E1, Bt,1 ≥ B̃t,1, (41b)

where E1 is an arbitrary power budget. The solution to (41)
is given by B̂t,1 = B̃t,1 and p1 = E1N

�Bt,1Nr
.

Proof: Substituting constraint p1 = E1N
Bt,1Nr

in (41b)
into the objective function in (41a), we first show that
PI( E1N

Bt,1Nr
, Bt,1) in (41a) is a monotonically decreasing func-

tion of the number of transmit sounding beams Bt,1 for a fixed
E1. Specifically, substituting μNr,Bt,1 = (N1/2

r + B
1/2
t,1 )2 and

σNr,Bt,1 = (N1/2
r + B

1/2
t,1 )(N−1/2

r + B
−1/2
t,1 )1/3 of (32) into

Pr(DS) ≥ F2

(
(μ̃2hmin − 2�E2�2)2 − 4σ2 Nt

p2Bt,2
NtμBt,2,L

4Ntσ2 Nt

p2Bt,2
σBt,2,L

)

≈ F2

(
μ̃2

2h
2
min − 4σ2 Nt

p2Bt,2
NtμBt,2,L

4Ntσ2 Nt

p2Bt,2
σBt,2,L

)
(34)

� PII(p2, Bt,2) (35)
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Fig. 3. SRP of AoA vs. SNR (dB) (Nr = 20, Nt = 64, L = 4,
N = 4, s = 1, E1 = 10, �Bt,1 = 1).

PI( E1N
Bt,1Nr

, Bt,1) gives

PI

(
E1N

Bt,1Nr
, Bt,1

)

= F2

⎛⎝ h2
minμ̃

2
1E1N − 4NtNrσ

2(N
1
2
r + B

1
2
t,1)

2

4NtNrσ2(N
1
2
r + B

1
2
t,1)(N

− 1
2

r + B
− 1

2
t,1 )

1
3

⎞⎠. (42)

Taking the first derivative of the argument inside F2(·) in (42)
with respect to Bt,1 reveals that the argument is a decreasing
function of Bt,1. This implies that the PI( E1N

Bt,1Nr
, Bt,1) in

(42) is a monotonically decreasing function of Bt,1. Hence,
(41) is maximized when Bt,1 = B̃t,1, which completes the
proof.

Therefore, based on Theorem 3, the maximum SRP of AoA
estimation for a given E1 is given by

PI

(
E1N

B̃t,1Nr

, B̃t,1

)

= F2

(
h2

minμ̃
2
1E1N/Nr − 4σ2NtμNr, �Bt,1

4Ntσ2σNr, �Bt,1

)
. (43)

We demonstrate Theorem 3 via numerical simulations in
Fig. 3, in which the SRP of AoA is evaluated for different
numbers of channel uses Bt,1 ∈ {1, 3, 5, 9, 11}. The simula-
tion parameters Nr = 20, Nt = 64, L = 4, N = 4, s = 1,
E1 = 10, and B̃t,1 = 1 are assumed. The curves clearly show
that the highest SRP is achieved when Bt,1 = 1.

Now, based on Theorem 3, the solution to (38) is readily
obtained as follows. In order to make SRP of AoA higher than
η1 in (38), we solve the inverse function in (43) with respect to
E1 and conclude that the resource allocation of Stage I should
meet the following conditions:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E1 =
4σ2NtNr(F−1

2 (η1)σNr, �Bt,1
+ μNr, �Bt,1

)

h2
minμ̃

2
1N

, (44a)

Bt,1 = B̃t,1, (44b)

p1 =
E1N

B̃t,1Nr

, (44c)

Fig. 4. Power allocation to achieve the required SRP vs. SNR (dB)
(Nr = 20, Nt = 64, L = 4, N = 4, s = 1, �Bt,1 = 1, η1 = η2 = 0.95).

where F−1
2 (·) is the inverse function of F2(·). By using

similar procedures of the proof of Theorem 3, we observe
the following more general result about the number of vectors
d in the signal model stated Lemma 1.

Corollary 1: The bound in (30) is a monotonically decreas-
ing function of the number of measurement vectors d.

Remark 7: Corollary 1 states the effect of d on the recovery
performance of SOMP. It can be interpreted in the following
way. The increase of the number of measurement vectors d
has an effect of increasing the number of columns of C in
Lemma 1 while keeping the Cmin unchanged. This leads to
the increase of the noise power due to the increase in the
dimension of N, which in turn reduces SRP.

When it comes to the number of channel uses Bt,2 at
Stage II, we cannot reach the same conclusion as Theorem 3
because the constant μ2 in (34) changes with Bt,2. Therefore,
Given Bt,1 = B̃t,1 and the total number of channel uses
K for channel sounding, Bt,2 is determined by (28), i.e.,
K = B̃t,1Nr/N +Bt,2. Then, the solution to (39) is given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E2 =
4σ2Nt(F−1

2 (η2)σBt,2,L + μBt,2,L)
h2

minμ̃
2
2

, (45a)

Bt,2 = K − B̃t,1Nr/N, (45b)

p2 =
E2

K − B̃t,1Nr/N
. (45c)

In summary, after solving the two-subproblems in (38)
and (39), we successfully solve the problem in (37). The
specific resource allocations for two stages are shown in (44)
and (45), respectively. In particular, when the total power
budget E ≥ E1 + E2, the joint SRP of AoA and AoD is at
least η1η2.

In Fig. 4, we illustrate the designed resource allocations
in (44) and (45) with the simulation results. The parameters
are set as η1 = η2 = 0.95. The curves of theoretical
results calculate the power allocations p1 and p2 through
(44c) and (45c). The curves of simulation results are the
required power allocations to achieved SRPs of η1 and η2.
The simulation parameters Nr = 20, Nt = 64, L = 4,
N = 4, s = 1 are assumed. In Fig. 4, to achieve the same
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Fig. 5. Evaluation of the power allocation strategy with equal power
allocation (Nr = 20, Nt = 64, L = 4, N = 4, s = 1, �Bt,1 = 1, η1 =
η2 = 0.95).

required SRP, i.e., η1 = η2 = 0.95, Stage II requires less
power allocation than Stage I. This is because the design of
the sounding beams for Stage II saves the power consumption.
Overall, the trend of the theoretical results is consistent with
that of the simulation results, which validates the proposed
resource allocation strategies in (44) and (45).

In Fig. 5, we demonstrate the SRP of AoA and AoD
achieved by the power allocations in (44) and (45) compared
to the equal power allocation. The power allocations p1 and
p2 are calculated by setting η1 = η2 = 0.95 and σ = 0.1 in
(44) and (45). The simulation parameters are Nr = 20,
Nt = 64, L = 4, N = 4, s = 1. As we can see from Fig. 5, the
proposed power allocation achieves much higher SRP than that
of the equal power allocation, which verifies the effectiveness
of the proposed power allocation strategy.

V. EXTENSION TO TWO-STAGE METHOD

WITH SUPER RESOLUTION

In this section, we extend the proposed two-stage method to
the one with super resolution, through which we aim to address
the issue of unresolvable quantization errors. Among the exist-
ing works, there are two directions to solve the quantization
error for off-grid effect. Firstly, the works in [46]–[48] model
the response vector as the summation of on-grid part and the
approximation error, in which the sparse Bayesian inference
is utilized to estimate the approximation error. Secondly, the
atomic norm minimization has been proposed in [19]–[21],
which can be viewed as the case when the infinite dictionary
matrix is employed. Based on atomic norm minimization,
the sparse signal recovery is reformulated as a semidefinite
programming. Compared to the sparse Bayesian inference, one
advantage of atomic norm minimization is that the recovery
guarantee is analyzable [19]–[21]. Following the methodology
of the atomic norm minimization, in this section, we aim
to estimate the AoAs and AoDs, i.e., {fr,1, . . . , fr,L} and
{ft,1, . . . , ft,L}, under the proposed two-stage framework.

A. Super Resolution AoA Estimation

The sounding beams of Stage I, i.e., Fb,1 and Wb,1, are
designed according to (15) and (18). By using the exact

expression of H in (2) rather than the quantized version in
(8), the observations for Stage I is given by

Y1 = WH
b,1HFb,1 + WH

b,1N1

= WH
b,1Ar diag(h)AH

t Fb,1 + WH
b,1N1

= WH
b,1ArCr + WH

b,1N1, (46)

where Y1 ∈ CNr×Bt,1 and Cr = diag(h)AH
t Fb,1 ∈

CL×Bt,1 . Since Wb,1 = SNr in (18), projecting Y1 onto Wb,1

yields

Ỹ1 = Wb,1Y1 = ArCr + N1. (47)

The observation in (47) is rewritten by explicitly involving
the array response vectors,

Ỹ1 = [ar(fr,1), . . . ,ar(fr,L)]Cr + N1 = R1 + N1, (48)

where R1 = [ar(fr,1), . . . ,ar(fr,L)]Cr ∈ CNr×Bt,1 . The
atom Ar(f,b) ∈ CNr×Bt,1 is defined in [19], [20] as
Ar(f,b) = ar(f)bH , where f ∈ [0, 1) and b ∈ CBt,1×1

with �b�2 = 1. We let the collection of all such atoms be the
set Ar = {Ar(f,b) : f ∈ [0, 1), �b�2 = 1}. Obviously, the
cardinality of Ar is infinite. The matrix R1 in (48) can be
written as the linear combination among the atoms from the
atomic set Ar,

R1 =
L∑

l=1

[cr]lAr(fr,l,bl) =
L∑

l=1

[cr]lar(fr,l)bH
l , (49)

where cr ∈ R
L×1 is the coefficient vector with [cr ]l ≥ 0,

and it has the relationship [Cr]l,: = [cr]lbH
l , ∀l = 1, . . . , L.

Observing (49), the dimension of vector cr , i.e., L, can be
interpreted as the sparest representation of R1 in the context
of the atomic set Ar. Therefore, in order to seek the sparsest
representation, after taking the noise in (48) into account, the
reconstruction problem is formulated by

min
R1

�R1�Ar,0 +
λ1

2
�Ỹ1 − R1�2

F , (50)

where λ1 > 0 is the penalty parameter, and �R1�Ar ,0 is
defined as

�R1�Ar ,0 = inf
cr

�cr�0 (51a)

s.t. R1 =
L∑

l=1

[cr]lAr(fr,l,bl), (51b)

Ar(fr,l,bl) ∈ Ar, [cr]l ≥ 0, (51c)

with �R1�Ar ,0 revealing the minimal number of atoms
in R1. When the sparest representation of R1, i.e.,
{[cr]lar(fr,l)bH

l }L
l=1, is found by solving (50), the AoAs

{fr,l}L
l=1 can be obtained from the atomic decomposition

in (49). However, since the minimization problem in (51)
is combinatorial, it is not tractable to calculate the value of
�R1�Ar,0. To overcome the challenge, the problem in (50) is
relaxed as,

min
R1

�R1�Ar,1 +
λ1

2
�Ỹ1 − R1�2

F , (52)
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where �R1�Ar ,1 is the atomic norm of R1 defined by

�R1�Ar,1 = inf
cr

�cr�1 (53a)

s.t. R1 =
L∑

l=1

[cr]lAr(fr,l,bl), (53b)

Ar(fr,l,bl) ∈ Ar, [cr]l ≥ 0. (53c)

It is noted that in (53), the atomic norm �R1�Ar,1 is to
minimize the summation of entries in cr instead of the number
of non-zero elements in (51).

Different from the intractability of (51), the problem in (53)
can be efficiently solved by semi-definite programming [19]:

�R1�Ar ,1 = inf
u,Z

1
2

tr (Toeplitz(u)) +
1
2

tr(Z) (54a)

s.t.

[
Toeplitz(u) R1

RH
1 Z

]
� 0, (54b)

where u ∈ CNr×1,Z ∈ CBt,1×Bt,1 , and Toeplitz(u) ∈
CNr×Nr denotes the Hermitian Toeplitz matrix generated by
the vector u. Plugging (54) into (52) gives

inf
u,Z,R1

tr (Toeplitz(u)) + tr(Z) + λ1�Ỹ1 − R1�2
F (55a)

s.t.X =
[

Toeplitz(u) R1

RH
1 Z

]
, X � 0. (55b)

It is straightforward to find that (55) is convex, where ADMM
can be employed to accelerate the computation. The aug-
mented Lagrangian of (55) is expressed as

L(u,Z,R1,X,Λ)

= tr (Toeplitz(u)) + tr(Z) + λ1�Ỹ1 − R1�2
F

+
〈
Λ,X−

[
Toeplitz(u) R1

RH
1 Z

]〉
+

ρ

2

∥∥∥∥X −
[

Toeplitz(u) R1

RH
1 Z

]∥∥∥∥2
F

, (56)

where X ∈ C(Nr+Bt,1)×(Nr+Bt,1) and Λ ∈
C(Nr+Bt,1)×(Nr+Bt,1) are Hermitian matrices, and ρ is
the Lagrangian multiplier. Then, with t being the iteration
index, we iteratively update the variables in (56) as follows:

(ut+1,Zt+1,Rt+1
1 )

= argmin
u,Z,R1

L(u,Z,R1,Xt,Λt), (57)

Xt+1 = argmin
X�0

L(ut+1,Zt+1,Rt+1
1 ,X,Λt), (58)

Λt+1 = Λt+ρ

(
Xt+1−

[
Toeplitz(ut+1) Rt+1

1

(Rt+1
1 )H Zt+1

])
. (59)

The solutions of the (57) and (58) are respectively

[ut+1]i =

⎧⎪⎪⎨⎪⎪⎩
Vi + ρSi

(Nr − t)ρ + Nr
, i = 1

Vi + ρSi

(Nr − t)ρ
, i = 2, . . . , Nr,

with Vi =
Nr+1−i∑

k=1

[Λt]k,k−1+i, Si =
Nr+1−i∑

k=1

[Xt]k,k−1+i,

Rt+1
1 =

1
λ1 + ρ

(λ1Ỹ1 + ρ[Xt]1:Nr,Nr+1:end

+ [Λt]1:Nr,Nr+1:end),

Zt+1 =
1
ρ
([Λt]Nr+1:end,Nr+1:end

+ ρ[Xt]Nr+1:end,Nr+1:end − IBt,1),

Xt+1 =
[

Toeplitz(ut+1) Rt+1
1

(Rt+1
1 )H Zt+1

]
− 1

ρ
Λt.

It is worth noting that in order to guarantee X � 0 as
shown in (58), we can set the negative eigenvalues of
Xt+1 to 0. When the iterative process converges, the result
Toeplitz(u) can be utilized to obtain the estimation of
AoAs. Specifically, we can take Vandermonde decomposi-
tion [19] for Toeplitz(u), Toeplitz(u) = VDVH , where
V = [ar(f̂r,1), . . . ,ar(f̂r,L)] ∈ CNr×L with {f̂r,l}L

l=1 being
the estimated AoAs and D = diag([d1, . . . , dL]) ∈ CL×L.
In practice, it is not necessary to calculate the Vandermonde
decomposition of Toeplitz(u) explicitly. Since the column
subspace of Toeplitz(u) is equal to R(V), the set of AoAs
can be estimated from Toeplitz(u) efficiently by spectrum
estimation algorithms such as MUSIC or ESPRIT [19], [20].

B. Super Resolution AoD Estimation

Similarly, the observations for the second stage is given by

Y2 = WH
b,2HFb,2 + WH

b,2N2

= WH
b,2Ar diag(h)AH

t Fb,2 + WH
2 N2

= CtAH
t Fb,2 + WH

b,2N2, (60)

where we let Ct = WH
b,2Ar diag(h) ∈ CL×L. At Stage II,

the observation Y2 in (60) is rewritten as

YH
2 = FH

b,2AtCH
t + NH

2 Wb,2 = RH
2 + NH

2 Wb,2, (61)

where we let R2 = FH
b,2AtCH

t ∈ CBt,2×L. Due to the design
of Fb,2 in (27), we have

FH
b,2At =

√
p2[At]1:Bt,2,: =

√
p2[at(ft,1), . . . ,at(ft,L)]1:Bt,2,:.

For convenience, we define ãt(f) = [at(f)]1:Bt,2 ∈ CBt,2×1

and Ãt = [ãt(ft,1), . . . , ãt(ft,L)] ∈ CBt,2×L. The AoD
estimation boils down to extracting L parameters {ft,l}L

l=1

in Ãt. We let At(f,b) ∈ CBt,2×L be At(f,b) = ãt(f)bH ,
where f ∈ [0, 1), b ∈ CL×1 with �b�2 = 1, and the atomic
set At is defined by At = {At(f,b) : f ∈ [0, 1], �b�2 = 1},
Similarly, RH

2 in (61) can be written as the linear combination
of the atoms from the set At,

RH
2 =

L∑
l=1

[ct]lAt(ft,l,bl) =
L∑

l=1

[ct]lat(ft,l)bH
l ,
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where ct ∈ RL×1 is the coefficient vector with [ct]l ≥ 0.
Therefore, using the similar approach as AoA estimation in
(52), the AoD estimation problem is given by

min
R2

∥∥RH
2

∥∥
At,1

+
λ2

2
�Y2 − R2�2

F , (62)

where λ2 is a penalty parameter. The problem in (62) can also
be solved in a similar manner as (52), and the estimation for
AoDs, i.e., {f̂t,l}L

l=1, can be obtained.
Furthermore, after the AoAs {f̂r,l}L

l=1 and AoDs {f̂t,l}L
l=1

are estimated, we can easily calculate the AoA and AoD array
response matrix Âr and Ât. Then, by using the channel esti-
mation technique provided in Section III-C, the final channel
estimation result is obtained.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
two-stage AoA and AoD estimation method and two-stage
method with super resolution. For comparison, we take the
OMP-based mmWave channel estimation method [9] as our
benchmark. Also, we include the oracle estimator as we
discussed in (7). The parameter settings for evaluation are
as follows. We assume throughout the simulation Nr = 20,
Nt = 64, and the channel model is given by (1). We let
the dimensions of the angle grids for the proposed two-stage
method and OMP [9] be Gr = sNr and Gt = sNt. The
number of paths is L = 4. The variance of the path gain is
σ2

l = 1, ∀l. The number of RF chains is N = 4. The number of
channel uses for the estimation task is K = 50. The minimum
allowed transmit beams at Stage I are B̃t,1 = 1. Without
loss of generality, for the proposed two-stage framework,
the power budget E = E1 + E2, where E1 and E2 are,
respectively, given by the resource allocations in (44) and (45)
with η1 = η2 = 0.95 and SNR = 20dB.

To evaluate the estimation performance, we use three per-
formance metrics:

• The first metric is the SRP. The error of the estimated
angles are defined as

� =
1

2L

L∑
l=1

(
|fr,l − f̂r,l|2 + |ft,l − f̂t,l|2

)
.

We declare the reconstruction is successful if � ≤ 10−3.
Precisely, SRP is defined as

SRP =
number of trials with � ≤ 10−3

number of total trials
.

• The second metric is MSE of angle estimation defined as

MSE = E

[
L∑

l=1

(
|fr,l − f̂r,l|2 + |ft,l − f̂t,l|2

)]
.

• The third metric is NMSE of channel estimation
defined as

NMSE = E[�H− Ĥ�2
F /�H�2

F ],

where Ĥ is the channel estimate.

Fig. 6. SRP vs. SNR (dB) with discrete angles (Nr = 20, Nt = 64,
L = 4, N = 4, K = 50, �Bt,1 = 1, s = 1).

Fig. 7. NMSE vs. SNR (dB) with discrete angles (Nr = 20, Nt = 64,
L = 4, N = 4, K = 50, �Bt,1 = 1, s = 1).

A. Channel Estimation Performance of Two-Stage Method
With Discrete Angles

For the simulations with discrete angles in Figs. 6-7, the
ft,l and fr,l in (1) are uniformly distributed on the grids of
size Gt = Nt and Gr = Nr, respectively. Three methods are
compared, which are proposed two-stage SOMP method, one-
stage OMP method [9], AMP method [49], and oracle method
in (7). We show the SRP in Fig. 6 and NMSE in Fig. 7.

In Fig. 6, considering that oracle method assumes that AoAs
and AoDs are known as a priori, we do not illustrate the
performance of the oracle method when comparing the SRP.
As can be seen in Fig. 6, the proposed two-stage SOMP
method achieves a higher SRP compared to the benchmarks.
It is worth noting that the AMP-based method require the
minimal measurements to guarantee the convergence [49].
When the number of channel uses is limited, the AMP-based
method can not achieve the near one SRP even if the SNR is
high. Also, the SRPs of AoA and AoD of the proposed two-
stage SOMP method are both higher than those of one-stage
OMP method. The improvement of SRP of AoD is because
we optimize the sounding beams of the second stage based
on the estimated AoA result. For the improvement of SRP of
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Fig. 8. MSE vs. SNR (dB) with continuous angles (Nr = 20, Nt = 64, L =
4, N = 4, K = 50, �Bt,1 = 1, s = 2).

AoA, it is because we allocate more power budget to Stage I
according to the proposed resource allocation strategy.

Similarly, in Fig. 7, the proposed two-stage SOMP method
has lower NMSE than the one-stage OMP and AMP methods.
In addition, we can find from Fig. 7 that the proposed two-
stage SOMP method converges to the performance of the
oracle method as SNR grows. Overall, Figs. 6-7 verify that the
proposed two-stage method outperforms the one-stage OMP
in the scenario of discrete angles.

B. Channel Estimation Performance of Two-Stage Method
With Continuous Angles

For this set of simulations in Fig. 8-9, we assume the
ft,l and fr,l in (1) are uniformly distributed in [0, 1). Four
methods are compared, which are the proposed two-stage
SOMP method, two-stage method with super resolution, one-
stage OMP method [9], and one-stage atomic method [21].
When implementing the two-stage SOMP method and one-
stage OMP method with the defined angle grids, the estimated
angles are located on the defined grids. Fig. 8 illustrates the
MSE and Fig. 9 illustrates the NMSE of channel estimation.

In Fig. 8, the proposed two-stage SOMP method and
two-stage method with super resolution outperform the
one-stage OMP and one-stage atomic method, respectively.
Interestingly, the two-stage SOMP method achieves the mini-
mal MSE when SNR is low. This is because when SNR is low,
i.e., SNR ≤ 5dB, the noise power is higher than that of the
quantization error. Therefore, using the quantized model could
reduce the complexity of problem and achieve near-optimal
performance. When SNR is high, i.e., SNR ≥ 5dB, the two-
stage method with super resolution achieves the minimal MSE.
This is because when SNR is high, the quantization error will
become dominant, which can not be handled by the grid-based
methods. Nevertheless, the Fig. 8 verifies that by dividing the
estimation into two stages, the estimation of AoAs and AoDs
is improved compared to the one-stage estimation.

Likewise, in Fig. 9, the proposed two-stage SOMP method
and two-stage method with super resolution also achieve lower
NMSE than the one-stage OMP and one-stage atomic methods.

Fig. 9. NMSE vs. SNR (dB) with continuous angles (Nr = 20, Nt = 64,
L = 4, N = 4, K = 50, �Bt,1 = 1, s = 2).

Similarly, when SNR is high, the two-stage method with super
resolution shows the minimum NMSE.

C. Analysis of Computational Complexity

For two-stage method, the computational complexity for the
first stage is O(LNrGr) = O(sLN2

r ), and the complexity for
the second stage is O(LBt,2Gt) = O(sL(K − Nr/N)Nt) =
O(sLKNt) with K being the number of channel uses. There-
fore, the total computational complexity for two-stage method
is O(sLN2

r ) + O(sLKNt) = O(sLKNt). However, for
the one-stage OMP method, the computational complexity is
O(LKNGtGr) = O(s2LKNNtNr). It is obvious that the
two-stage method has much lower computational complexity
compared to the one-stage OMP by O(sNNr) times.

For the two-stage method with super resolution, in Stage I,
the computational complexity of ADMM per iteration is dom-
inated by the eigenvalue decomposition of Xt+1, i.e., O(N3

r ).
Similarly, for Stage II, each iteration has the computational
complexity of O(B3

t,2) = O((K − Nr/N)3) = O(K3).
Given the number of iteration T and K ≥ Nr, the total
computational complexity of the super resolution method is
O(TN3

r ) + O(TK3) = O(TK3). In order to compare the
complexities of the two-stage method with super resolution
and one-stage OMP, we consider a simple example as follows.
In particular, if Nr = Nt and K = O(Nr), the complexity
of the proposed two-stage method with super resolution is
O(s2LN/T ) times lower than that of the one-stage OMP.

VII. CONCLUSION

In this paper, the two-stage method for the mmWave channel
estimation was proposed. By sequentially estimating AoAs
and AoDs of large-dimensional antenna arrays, the proposed
two-stage method saved the computational complexity as well
as channel use overhead compared to the existing methods.
Theoretically, we analyzed the SRPs of AoA and AoD of the
proposed two-stage method. Based on the analyzed SRP, we
designed the resource allocation strategy among two stages to
guarantee the accurate AoA and AoD estimation. In addition,
to resolve the issue of quantization error, we extended the
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proposed two-stage method to a version with super resolution.
The numerical simulations showed that the proposed two-stage
method achieves more accurate channel estimation result than
the one-stage method.

APPENDIX A
PROOF OF LEMMA 1

For an arbitrary random noise matrix N, the SRP of SOMP
has been characterized in [33]. This result is general to be
extended to the case in Lemma 1, where the entries in N are
i.i.d. complex Gaussian.

Theorem 4 (SRP of SOMP With Arbitrary Random
Noise [33]): Suppose the signal model provided in Lemma 1.
Given the measurement matrix Φ with its MIP constant
satisfying μ < 1/(2L + 1) and the cumulative distribution
function (CDF) of �N�2 satisfying

Pr(�N�2 ≤ x) = FN (x), (63)

the SRP of SOMP in Algorithm 1 satisfies

Pr(VS) ≥ FN

(
Cmin(1 − (2L − 1)μ)

2

)
, (64)

where VS is the event of successful reconstruction of Algo-
rithm 1, Cmin = min

i∈Ω
�[C]i,:�2.

According to the results in Theorem 4, the SRP of SOMP
is characterized by the CDF of �N�2. Thus, in order to extend
the result provided in Theorem 4 to the case in Lemma 1, the
CDF of �N�2 is of interest when the entries of N ∈ CM×d are
i.i.d. CN (0, σ2). Fortunately, according to [40], [41], the CDF
of the largest singular value of N converges in distribution to
the Tracy-Widom law as M, d tend to ∞,

Pr(�N�2 ≤ x) ≈ F2

(
x2/σ2 − μM,d

σM,d

)
, (65)

where the function F2(·) is the CDF of Tracy-Widom law
[40], [41], μM,d = (M1/2 + d1/2)2, and σM,d = (M1/2 +
d1/2)(M−1/2 + d−1/2)1/3. Finally, after plugging the expres-
sion in (65) into (64) of Theorem 4, we obtain Lemma 1,
which completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

One can write the effective noise as Ñ = E+N where the
entries in N are i.i.d. with CN (0, σ2). Therefore, we have the
following probability bound,

Pr
(
�Ñ�2 ≤ x

) (a)

≤ Pr (�E�2 + �N�2 ≤ x)

(b)≈ F2

(
(x − �E�2)2/σ2 − μM,d

σM,d

)
, (66)

where the inequality (a) is due to the triangular inequality,
and the approximation (b) holds from (65). Then, according
to Theorem 4, plugging the expression (66) into (64) leads to

Pr(VS) ≥ F2

(
((1−(2L−1)μ)Cmin−2�E�2)

2 − 4σ2μM,d

4σ2σM,d

)
,

where Cmin = min
i∈Ω

�[C]i,:�2. This concludes the proof.

APPENDIX C
PROOF OF THEOREM 2

Plugging RSB in (25) and TSB in (27) into (21) gives
�[Φ2]:,j�2 =

√
p2Bt,2/Nt, j = 1, . . . , Gt, and Cmin =

mintl∈Ωt �[C2]tl,:�2 = |hmin| with tl being the index of
the lth path of At in Āt such that [Āt]:,tl

= [At]:,l,
l = 1, . . . , L. Hence, incorporating the latter Cmin and
�[Φ2]:,j�2 into Proposition 2, and neglecting the quantization
term can conclude the proof.
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